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A B S T R A C T

Digital soil mapping (DSM) often relies on existing soil samples obtained from various sources. However, the
spatial distribution of such soil samples can be biased, for example, towards areas of better accessibility. Such
biased coverage over the geographic space (i.e., spatial bias) often leads to biased coverage of the soil samples
over the environmental covariate space. As a result, spatial bias degrades the correlation or statistical re-
lationship between samples and covariates in the study area and impedes DSM accuracy. This paper presents a
representativeness heuristic for mitigating spatial bias in existing soil samples for improving DSM accuracy. The
key idea of the heuristic was to define and quantify sample representativeness as the goodness-of-coverage of the
soil samples over the environmental covariate space. Spatial bias was then mitigated by weighting the samples
towards maximizing their representativeness. Determination of the sample weights was conceived as an opti-
mization problem and accordingly the optimal weights were determined using a genetic algorithm. To evaluate
the effectiveness of the representativeness heuristic, a case study of mapping soil organic matter (SOM) content
using existing soil samples was conducted in Heshan study area, northeastern China. Results showed that
weighting soil samples using the optimal weights determined from the representativeness heuristic improved
SOM content mapping accuracy. Moreover, a positive relationship between sample representativeness and
mapping accuracy was observed, suggesting sample representativeness is an effective indicator of mapping
accuracy. Additionally, the determined optimal weights were informative of individual sample importance and
thus can be used as guidance to filter existing soil samples to improve DSM accuracy.

1. Introduction

Information on the spatial distribution of soil is a crucial ingredient
for environmental monitoring, modeling and management (Arrouays
et al., 2014). For example, soil spatial information is a key input to land
surface processes modeling such as hydrological models (Singh and
Woolhiser, 2002; Zhu and Mackay, 2001). Digital soil mapping (DSM)
is widely used to predict soil spatial information from environmental
covariate layers based on the soil-environment covariation relationship
derived from soil samples (McBratney et al., 2003; Minasny and
McBratney, 2016; Scull et al., 2003). Therefore, soil samples used for
DSM need to be representative of the soil-environment relationship
over the geographic mapping area, in order to achieve satisfactory
mapping accuracy (An et al., 2018; Vaysse and Lagacherie, 2015).

Representative soil samples are usually obtained through sampling
campaigns following well-designed sampling schemes such as stratified
sampling, systematic sampling, and purposive sampling. Under these
sampling schemes, sample locations are allocated to well cover the
geographic and/or covariate space to be mapped (De Gruijter et al.,
2006; Yang et al., 2013; S. Zhang et al., 2016). For example, under
stratified sampling, when a mapping area contains sub-areas of dif-
ferent land cover types, soil samples are taken within each of these sub-
areas to ensure that all of the variation present in a sub-area is mea-
sured in the samples (Jensen and Shumway, 2010). However, con-
ducting such field sampling campaigns to collect soil samples can be
very expensive, labor intensive, and time consuming. Therefore, ob-
taining soil samples for DSM through additional sampling may not al-
ways be feasible due to possible budgetary and/or time constraints.
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In such cases, existing soil samples available from various sources
are often pooled and utilized for DSM (Liu, 2017). Existing samples also
provide a basis for making decisions regarding where to place future
sample locations should additional soil sampling be conducted (Carré
et al., 2007; S. Zhang et al., 2016). Examples of existing soil samples are
legacy samples from past soil surveys (Vaysse and Lagacherie, 2015),
samples collected by various groups of researchers (An et al., 2018),
and samples contributed by volunteer citizen scientists (Rossiter et al.,
2015).

Nevertheless, existing soil samples are susceptible to spatial bias
(Liu, 2017). That is, the spatial distribution of existing soil samples may
be biased towards certain geographic area. For instance, soil samples
contributed by volunteers are more concentrated in areas of better ac-
cessibility (Kadmon et al., 2004). Soil samples from past soil surveys
may contain spatial bias as sampling methods adopted by surveyors are
generally empirical and lack statistical criteria (Carré et al., 2007). Even
soil samples collected following well-designed sampling schemes can be
subject to spatial bias. For example, some designed sample locations
may not be sampled due to field condition constraints (e.g., in-
accessibility). Under such circumstances, spare soil samples shall be
taken at locations chosen at sampler's discretion (S. Zhang et al. 2016).
Such deviations from the original sampling design may lead to spatial
bias in the samples. Besides, pooling existing soil samples from different
sources may also result in spatial bias in the pooled samples because
samples collected by different research groups or agencies may cover
different parts of the mapping area at imbalanced sample densities (An
et al., 2018).

Such spatial bias of soil samples over the geographic space can re-
sult in biased coverage of the samples over the environmental covariate
space (De Gruijter et al., 2006; Minasny and McBratney, 2006), al-
though bias in covariate space does not necessarily equate to spatial
bias. Spatial bias thus would degrade representativeness of the samples,
which is the degree to which the samples capture the variabilities of the
environmental covariates over the mapping area. The spatial bias in soil
samples, if not properly accounted for, would result in relatively low
DSM accuracy compared with approaches that take spatial bias into
account (An et al., 2018; Carré et al., 2007).

There are few studies related to assessing or improving re-
presentativeness of existing soil samples for DSM. Carré et al. (2007)
proposed a method for estimating and improving the representativeness
of existing legacy soil samples. In this method, the principle of Latin
hypercube sampling proposed by Minasny and McBratney (2006) was
used to assess the representativeness of existing soil samples through
the HELS (Hypercube Evaluation of a Legacy Sample) algorithm and to
guide additional sampling efforts through the HISQ algorithm. The two
algorithms are detailed in Carré et al. (2007) and the basic ideas of the
algorithms were summarized here as follows. The representativeness of
existing soil samples was estimated by calculating the relative densities
of the existing sampling units and the environmental covariate data.
The relative densities indicate areas where there is over- or under-ob-
servation in the existing soil samples relative to the covariates. Addi-
tional sampling should then be prioritized to areas with high degree of
under-observation (Carré et al., 2007). This method improves the re-
presentativeness of existing soil samples by supplementing additional
samples; it does not provide a way to improve the accuracy DSM uti-
lizing all existing samples.

An et al. (2018) developed an approach for identifying re-
presentative samples from existing soil samples based on representa-
tiveness of individual samples. In this approach, the representativeness
of an individual soil sample is measured as the fuzzy membership of the
sample location to an environmental cluster (i.e., distance between the
sample location and an environmental cluster centroid in the environ-
mental covariate space) (Yang et al., 2013). A set of representative
samples were then identified by selecting soil samples from existing
samples based on their individual sample representativeness (e.g., se-
lecting sample locations whose fuzzy membership values exceed a user-

defined threshold). The reported case study of this approach showed
that the accuracy of DSM achieved using the representative samples
identified from all existing samples was generally higher than the ac-
curacy achieved using non-representative samples (i.e., all samples
minus representative samples), but it was only comparable to the ac-
curacy achieved using all samples (An et al., 2018). This approach is
useful for identifying representative samples from existing soil samples.
However, using the identified representative samples for DSM did not
achieve a clear improvement in prediction accuracy over using all ex-
isting samples.

This paper presents a novel representativeness heuristic for miti-
gating spatial bias in existing soil samples to improve the accuracy of
DSM. The basic idea underlying this heuristic follows. DSM utilizing
representative soil samples can achieve high accuracy because the
samples sufficiently capture the variation of the environmental cov-
ariates (Minasny and McBratney, 2006; Qi and Zhu, 2003; Yang et al.,
2013). In light of this, representativeness of soil samples was defined
and quantified in this study as the goodness-of-coverage of the sample
locations over the covariate space (Kruskal and Mosteller, 1979). Re-
presentativeness of the soil samples was then improved through
weighting the samples towards maximal goodness-of-coverage. The
sample weights determined based on this representativeness heuristic
were then used to weight the soil samples in deriving the soil-en-
vironment covariation relationship for DSM. The hypothesis was that
weighting existing soil samples using the weights determined from the
heuristic can mitigate spatial bias in the samples to increase their re-
presentativeness and thus improve DSM accuracy (Zhang et al., 2018).

The main objective of this study was to present the representa-
tiveness heuristic and evaluate its effectiveness in mitigating spatial
bias in existing soil samples for improving DSM accuracy. A case study
of mapping A-horizon soil organic matter (SOM) content using existing
soil samples in Heshan study area, northeastern China was conducted to
thoroughly evaluate the effectiveness of the proposed heuristic using
two soil mapping methods: the individual soil mapping method (Zhu
et al., 2015) and multiple linear regression.

2. Material and methods

2.1. Study area and data

2.1.1. Study area
The 60 km2 study area is located at Heshan farm (116°12′E,

48°57′N) in Heilongjiang province, northeastern China (Fig. 1). It has a
maximum terrain relief of about ninety meters and is generally flat with
a gentle slope gradient of less than four degrees. The soils in this area
are mostly formed on deposits of silt loam loess except the valley where
the underlying parent material is fluvial deposits. The farm has been
cultivated for over forty years to grow soybeans and wheat. There is a
thick A-horizon (top-layer of soil) with high organic matter content.
The land use and soil management have been uniform throughout the
area and no organic fertilizer has been applied to these soils to maintain
agricultural productivity because of the naturally high organic matter
content (Zhu et al., 2010).

2.1.2. Soil samples
2.1.2.1. Existing soil samples. There are 59 existing soil samples in the
study area obtained through sampling campaigns for various purposes
in previous studies (Yang et al., 2013; Zeng et al., 2016; Zhu et al.,
2010) (Fig. 1). Among these soil samples, 29 samples were collected
through integrative hierarchical stepwise sampling (Yang et al., 2013),
10 samples through subjective sampling, and 20 samples through
transect sampling (Zhu et al., 2010). Interested readers can refer to
the above references for details. An extensive discussion of the sampling
methods is not necessary here because the representativeness heuristic
proposed in this study imposes no requirements or assumptions on the
methods used to collect existing soil samples. The soil organic matter
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(SOM) content (%) in A-horizon soil was measured for each of the soil
samples. The mean SOM content over the sample locations was 4.454%,
with a standard deviation of 1.638%.

The existing soil samples were subject to spatial bias. As can be seen
from their spatial distribution, there are areas of clusters of samples
where soil samples are more concentrated than other areas. When using
these existing soil samples to train DSM models for mapping SOM
content in the study area, the proposed representativeness heuristic was
applied to mitigate the spatial bias in these soil samples to improve
mapping accuracy (Section 2.2).

2.1.2.2. Validation soil samples. Accuracy of the predicted SOM content
maps were assessed based on 42 soil samples collected through
systematic sampling on a 1100 m × 740 m grid in the study area
(Fig. 2) (Zhu et al., 2010). The A-horizon SOM content (%) was
measured for each of the soil samples. The mean SOM content over
the sample locations was 4.319%, with a standard deviation of 0.806%.
These regularly spaced soil samples cover most parts of the study area
and spread across various slope positions (footslope, backslope, slope
shoulder, ridge) (Qin et al., 2009), except the lowest parts of the
landscape which are floodplains that were not sampled. The
representativeness of the samples was 0.858, evaluated using the
method for quantifying sample representativeness as detailed in
Section 2.2.1. These soil samples were used as validation samples
(Zhu et al., 2015) to evaluate accuracies of the SOM content maps
predicted from the 59 existing soil samples (Section 2.4).

2.1.3. Environmental covariates
Environmental covariates were selected based on soil forming fac-

tors (Dokuchayev, 1883; Jenny, 1994). There are five categories of soil
forming factors: climate, organisms, terrain, parent materials, and time.
In this small study area, parent materials and macro-climatic conditions
are relatively uniform and micro-climatic variations can be reflected by
topographic conditions. The spatial variation of the A-horizon SOM
content in the study area is mostly influenced by topographic and

vegetation conditions (Yang et al., 2013; Zhu et al., 2015, 2010). Thus,
six topographic covariates including elevation, slope gradient, contour
curvature, profile curvature, relative slope position and topographic
wetness index (TWI), and one vegetation covariate normalize difference
vegetation index (NDVI) were selected as environmental covariates for
soil mapping in the study area (Fig. 3) (Zhu et al., 2015). A digital
elevation model (DEM) of the study area at 10-m spatial resolution was
created from the 1:10,000 topographic map of the area. Elevation, slope
gradient, contour curvature, profile curvature, relative slope position
(Qin et al., 2012, 2009), and TWI (Pei et al., 2010; Qin et al., 2007)
were then derived from the DEM. NDVI was derived from a Landsat
ETM+ image of the area obtained on September 25, 2000 (Zhu et al.,
2015).

Principal component analysis (PCA) (Jolliffe, 2002) was adopted to
eliminate collinearity among the covariates and reduce the number of
covariates. Prior to PCA transformation, outliers in the covariate data
were removed and the covariates were linearly stretched to range 0 to
100 (elevation, slope gradient, relative slope position, TWI, NDVI) or
range −50 to 50 (contour curvature, profile curvature) (Yang et al.,
2013). PCA was then adopted for transforming the covariate data to
derive linearly independent principal components (PCs). The first three
PCs retaining 91.7% (66.6%, 17.7%, and 7.4%, respectively) of the
total variance were used as new environmental covariates for mapping
SOM content in the study area (Fig. 4).

2.2. The representativeness heuristic for mitigating spatial bias

2.2.1. Quantifying sample representativeness
Based upon the basic ideas presented in the Introduction, re-

presentativeness of soil samples in this study is defined as the goodness-
of-coverage of the samples in the covariate space (Kruskal and
Mosteller, 1979). It was quantified as the similarity between two
probability density distributions in the covariate space: the distribution
over soil sample locations (sample distribution hereafter) and the

Fig. 1. Study area and soil samples.

Fig. 2. Validation soil samples in the study area.
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distribution over the study area (population distribution hereafter)
(Zhang, 2018).

Kernel density estimation (KDE) was adopted to estimate the two
distributions in the covariate space. KDE is a nonparametric method
that can estimate continuous probability density functions (PDF) from
discrete sample values (Silverman, 1986) using equation

=
=

f v w
h

K v
h

( ) 1 V
i

n
i

i
1 (1)

where f(v) is the estimated PDF over variable v, Vi the ith sample value
of v, wi the weight for the ith sample value, and n the total number of
sample values. The Gaussian kernel was adopted for the kernel function
K in this study (Silverman, 1986):
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where h is a smoothing parameter called bandwidth. Bandwidth is a
crucial parameter for KDE. A too-large bandwidth would result in a flat
PDF that fails to reflect variability in the sample values. A too-small
bandwidth would result in a spiky PDF that contains too much noise.

The rule-of-thumb algorithm is often used to determine the bandwidth
h for KDE when sample size (i.e., n) is large (Silverman, 1986):

=h n1.06· ·v
1/5 (3)

in which σv is the standard deviation of the n sample values of v. When
the sample size is small, the “golden section search” procedure
(Brunsdon, 1995) can be used to determine the optimal bandwidth for
KDE based on the maximum likelihood estimation principle (Zhang
et al., 2017). Interested readers are referred to Brunsdon (1995) for
details of the procedure.

Representativeness of the existing soil samples was computed fol-
lowing three steps. First, the sample distribution and the population
distribution regarding each environmental covariate (i.e., each of the
three principal components) were estimated using KDE (Eq. (1)). When
estimating the sample distribution using KDE, covariate values at soil
sample locations were taken as the sample values. Each soil sample may
carry a different sample weight (Section 2.2.2). Given the small sample
size (i.e., number of existing soil samples), the bandwidth was de-
termined using the “golden section search” procedure. When estimating
the population distribution using KDE, covariate values at all raster

Fig. 3. Environmental covariates selected for mapping A-horizon soil organic matter (SOM) content in the study area. Lighter color indicates high covariate values.

Fig. 4. Selected principal components used as environmental covariates for mapping soil organic matter content in the study area.
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cells in the study area were taken as sample values of equal weight.
Given the large sample size (i.e., number of cells in the study area), the
bandwidth was determined using the rule-of-thumb algorithm.

Second, the similarity between the sample distribution and the po-
pulation distribution regarding each environmental covariate was
computed as the overlapping area under the two probability distribu-
tion curves (Zhu, 1999):

=
×

+
SIM

A A
A A

2
.l Q P

Q P

l l

l l (4)

In the above equation, the sample distribution and population dis-
tribution regarding the lth covariate estimated in the first step are de-
noted as Ql and Pl, respectively. Areas under the two distribution curves
are denoted as AQl and APl, respectively. The similarity between the two
distributions is denoted as SIMl, which equals the area of the over-
lapping part of the two distribution curves denoted as AQl ∩APl (Fig. 5).
The similarity SIMl has a value range of [0, 1.0] with a higher value
reflecting better goodness-of-coverage of the soil samples regarding the
lth covariate.

The Kulback-Liebler (KL) divergence is a commonly used measure of
(dis)similarity between two probability distributions. However, we
found the KL divergence measure to be easily saturated (i.e., KL di-
vergence is very close to zero on two distributions that are not so si-
milar). This makes it an inappropriate objective function for the opti-
mization algorithm to optimize sample weights (see Section 2.2.2).
Thus, the overlapping area under the two probability density curves
(Zhu, 1999) was adopted as a similarity measure in this study.

Third, sample representativeness was then computed as a weighted
average of the similarities regarding individual covariates (Eq. (5)). The
weight was proportional to the proportion of the variance each prin-
cipal component retains. The rationale is that a principal component
retaining larger variance is more prominent for the soil samples to
capture covariate variations, and thus has a larger contribution to
sample representativeness.
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L j
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In the above equation, sample representativeness R equals the
overall similarity SIMoverall. The similarity regarding the lth covariate is
SIMl. The eigenvalue of the lth principal component λl indicates the
percentage of variance it retains. The number of selected principal
components is L. Sample representativeness R has a value range of [0,
1.0], with a higher value indicating better sample representativeness.

2.2.2. Improving sample representativeness
The spatial bias in existing soil samples was mitigated by improving

sample representativeness, i.e., increasing the overall similarity be-
tween the sample distribution and the population distribution. Recall
that sample weight plays a role in estimating the sample distribution
(Eq. (1)). Thus, representativeness improvement was accomplished by
adjusting the weight of individual soil samples towards increasing the
similarity between the two distributions.

Here the key is to determine the sample weights. Determination of
the sample weights in this study was conceived as an optimization
problem, where the objective is to find a set of optimal sample weights
that maximize the representativeness of the soil samples. A genetic al-
gorithm (GA) implemented in the Distributed Evolutionary Algorithms
in Python (DEAP) package (Rainville et al., 2012) was adopted to de-
termine the optimal sample weights. GA works as follows. In essence,
GA represents sample weights as an “individual” that consists of a list of
ordered “genes”, where each “gene” is one sample weight value. At first,
an initial pool (“population”) of candidate sample weight lists (“in-
dividuals”) were generated, and each list was filled with sample weight
values randomly drawn from a uniform distribution in the interval of
[1.0, Wmax] (Wmax is the maximum possible sample weight; Wmax was
set to 10.0 by default). GA then evaluates sample representativeness
given each sample weight list in the pool. Sample weight lists were then
selected with selection probabilities proportional to the representa-
tiveness to remain in the pool. Pairs of sample weight lists were also
selected with the selection probabilities to apply the crossover operator
to produce new weight lists. After the new weight lists were added to
the pool, a portion (e.g., 5%) of the weight lists in the pool were se-
lected with a uniform probability and each selected weight list was
mutated by adjusting the weight value at randomly selected positions
by a small random amount drawn from a Gaussian distribution
(mean = 0; standard deviation = 0.5). In this way, the pool was up-
dated and subsequently, another iteration of evaluation, selection,
crossover, and mutation were repeated. GA terminates after going
through a prescribed number of iterations (“generations”, e.g., 200) or
the highest sample representativeness exceeds a predefined threshold
(e.g. 0.9). The sample weight list in the current pool corresponding to
the highest representativeness value is then returned as the optimal
sample weights.

2.3. Soil mapping methods

Two methods were adopted for mapping the A-horizon SOM content
in the study area. One is the individual predictive soil mapping method
proposed by Zhu et al. (2015) for mapping soil properties. The other is
the multiple linear regression method, a general approach for modeling
multivariate linear relationships. Soil mapping using these two methods
allows examination of the effectiveness of the proposed representa-
tiveness heuristic on a domain-specific soil mapping method and a
general predictive mapping method.

2.3.1. Individual predictive soil mapping (iPSM)
iPSM is a method specially designed for digital soil mapping (Zhu

et al., 2015) and has been used in a wide range of studies (An et al.,
2018; Liu, 2017; Zeng et al., 2016; S. Zhang et al. 2016). An overview of
the iPSM method is provided as follows. Interested readers may refer to
(Zhu et al., 2015) for full details of the method. iPSM uses the soil-
environment relationship at each individual soil sample location to
predict soil properties at unsampled locations. Based on the assumption
that locations of similar environment conditions shall have similar soil
property values, iPSM predicts soil property value at an unsampled
location as a weighted average of soil property values observed at
sample locations, where the environmental similarities between the
unsampled location and soil sample locations are used as weights. iPSM
imposes no requirements on sample size and does not require the set of
sample locations being representative. It is an effective alternative for

Fig. 5. Schematic example of the overlapping area between the sample dis-
tribution and the population distribution.
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soil mapping when existing soil samples are limited in terms of re-
presenting the study area (Zhu et al., 2015).

The iPSM method for mapping soil properties includes two main
operational steps. The first step is to calculate environmental similarity.
Environmental similarity between an unsampled location j and sample
location i is first evaluated at the individual environmental variable
(i.e., principal component) level, and then similarities based on all
environmental variables are integrated to represent the overall simi-
larity between unsampled location j and sample location i.

The environmental similarity between unsampled location j and
sample location i w.r.t. the lth principal component, Si, jl, is calculated
as:

=
× ×

S
V V
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2
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j
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l
,

2

2l

j
l (6)

In the above equation, the value of the lth principal component at
sample location i and unsampled location j are denoted by Vil and Vjl,
respectively. The standard deviation of the lth principal component is
SDl. The standard deviation of the lth principal component from Vjl

(instead of from the mean), SDj
l, is computed by:
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where Vpl is the value of the lth principal component at raster cell p, and
m is the total number of raster cells in the study area.

The overall environmental similarity between unsampled location j
and sample location i considering all L selected principal components,
Si, j, is then determined following a limiting factor approach based on
the simplistic assumption that the least similar environmental factor
determines the overall environmental similarity between two locations.
A minimum operator was applied to take the minimum of the en-
vironmental similarities to individual principal components (i.e., Si, j1,
Si, j2, … , Si, jL) as the overall environmental similarity Si, j (Zhu et al.,
2015; Zhu and Band, 1994):

= …S S S Smin( , , , )i j i j i j i j
L

, ,
1

,
2

, (8)

The environmental similarity between unsampled location j and
each of the n sample locations can be computed following Eq. (6)–(8).

The second step of iPSM is to compute the soil property value at
unsampled location j based on its environmental similarities to the n
sample locations. A weighted average approach is adopted for this
purpose:
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where Tj is the predicted value of the soil property (i.e., A-horizon SOM
content) at unsampled location j, and Ti the observed value of the soil
property at sample location i.

The original iPSM method does not account for sample weight when
predicting soil property values. This study extends the iPSM method on
weighted soil samples. Soil samples can be weighted with the optimal
sample weights determined from the proposed representativeness
heuristic in predicting the soil property value at unsampled location j:
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Here wi is the weight of the soil sample at location i. Everything else
being equal, a soil sample of a larger weight has larger contribution to
the estimation at a unsampled location.

2.3.2. Multiple linear regression (MLR)
MLR is a general method for modeling multivariate linear

relationships between a dependent variable and independent variables.
It has been widely used for mapping soil properties from environmental
covariates (Brus et al., 2019; Grunwald, 2009; Zeng et al., 2016; Zhu
et al., 2015). Unlike iPSM, MLR has stricter requirements on sample size
and the representativeness of the sample set for building a statistically
robust model. An MLR model takes the following form:

= + ×
=

T Vj l

L l
j
l0

1 (11)

where Tj is the predicted value of the soil property (i.e., A-horizon SOM
content) at unsampled location j, Vjl the value of the lth principal
component at location j, β0 the intercept, and βl the coefficient for the
lth principal component.

The intercept β0 and coefficients βl's are determined by fitting the
model on training data (i.e., soil property values and values of the
principal component at the n sample locations) based on the ordinary
least squares (OLS) criterion, i.e., finding the values of β0 and βl's that
minimize the sum of squared residuals between predicted soil property
values and observed soil property values at the n sample locations:
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The OLS procedures implemented in the Scikit-learn package
(Pedregosa et al., 2012) were adopted to train an MLR model using
(unweighted) soil samples.

This study extends the MLR method on weighted soil samples. In
training an MLR model, soil samples can be weighted with the optimal
sample weights determined from the proposed representativeness
heuristic. Specifically, sample weights are used to weight individual
squared residuals in fitting the model parameters using OLS:
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where wi is the weight of the soil sample at location i. Samples with
larger weights are treated as more important in this model fitting
process. The OLS procedures implemented in the Scikit-learn package
(Pedregosa et al., 2012), capable of accounting for sample weights,
were adopted to train an MLR model using weighted soil samples.

The MLR model, trained with either unweighted soil samples or
weighted soil samples, was then applied to the environmental condition
at every location (raster cell) in the study area to predict SOM content
values.

2.4. Accuracy assessment

Three indices, the mean error (ME), root mean square error (RMSE),
and mean absolute error (MAE), were used to measure accuracy of the
predicted SOM content maps. All three indices are computed based on
the differences between the predicted and observed SOM content values
at the validation soil sample locations (Section 2.1.2.2):
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In the above equations, k is the number of validation soil samples,
and Ti and Ti the predicted and observed SOM content values at vali-
dation sample location i, respectively.

ME was adopted as a measure of prediction bias, with values closer
to zero indicating lower prediction bias. RMSE and MAE express
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average model prediction error, with lower values indicate higher
prediction accuracy. RMSE is more indicative of large prediction errors
than MAE as it gives a relatively high weight to large prediction errors
(the errors are squared before being averaged) (Chai and Draxler,
2014).

In addition, the explained variance score (EVS) was adopted to in-
dicate the overall goodness-of-fit of the soil mapping models. EVS was
computed using the following equation:

=EVS Var T T
Var T

1 { }
{ }

,
(17)

where Var{T} and Var T T{ } are variance of the observed SOM con-
tent values and variance of the residuals across the validation soil
sample locations, respectively. EVS reflects the proportion of the spatial
variability in SOM content as represented by the validation samples
explained by the models. The best possible EVS is 1.0 indicating perfect
model fitting and lower values indicating worse model fitting.

2.5. Experiment design

Experiments were designed to evaluate the effectiveness of the re-
presentativeness heuristic in improving SOM content mapping accuracy
and to examine the impact of sample size. Additionally, the optimal
weights determined from the heuristic were also used as guidance to
filter (instead of weighting) existing soil samples for improving SOM
content mapping accuracy.

2.5.1. Effectiveness of the representativeness heuristic
Effectiveness of the representativeness heuristic was evaluated from

three aspects. First, all 59 existing soil samples (Fig. 1) were used as
training samples in the two soil mapping methods (iPSM and MLR) to
map SOM content. Accuracies of SOM content maps predicted using
models trained with unweighted soil samples were compared to those
predicted using models trained with soil samples weighted by the op-
timal weights determined from the representativeness heuristic. If
weighting the soil samples resulted in more accurate SOM content
maps, the heuristic can be proved effective.

Second, two tests were performed to examine the statistical sig-
nificance of the effects of weighting soil samples by the optimal sample
weights. For the first test, prediction accuracy achieved under the op-
timal sample weights was compared to prediction accuracy achieved
under randomly assigned weights. For this purpose, one hundred sets of
random sample weights were generated, where each weight value was
randomly drawn from a uniform distribution over the range [1, Wmax].
The soil samples weighted by each set of the random weights were used
to train the models and to map SOM content. One sample t-test was then
applied to test if the accuracy achieved under the optimal weights is
statistically significantly higher than the average accuracy achieved
under the random sample weights. For the second test, one hundred sets
of weights were generated by randomly shuffling the order of the op-
timal weights. The soil samples weighted by each set of the shuffled
weights were used to train the models and to map SOM content. One

sample t-test was applied to test if the accuracy achieved under the
optimal weights is statistically significantly higher than the average
accuracy achieved under the randomly shuffled optimal weights. If
weighting the soil samples by the optimal weights resulted in statisti-
cally significantly higher SOM content prediction accuracies than
weighting by random weights or randomly shuffled optimal weights, it
can be proved that the improvements in SOM content mapping accu-
racy achieved through weighting soil samples by the optimal weights
did not happen by random chance (i.e., random weight values or op-
timal weight values in random order), which would in turn suggest that
the heuristic is effective.

Third, the relationship between prediction accuracy and sample
representativeness was examined. In the GA used to optimize sample
weights (Section 2.2.2), sample weights and sample representativeness
gradually improves over the generations. At each generation, the best
sample weights corresponding to the highest sample representativeness
were used to weight the soil samples to train models to map SOM
content. The relationship between accuracy of the predicted SOM
content map and sample representativeness was examined by plotting
prediction accuracy against sample representativeness over the gen-
erations of the GA. If the relationship was positive, it can be proved that
higher sample representativeness as quantified by the heuristic can
effectively indicate higher prediction accuracy.

2.5.2. Impact of sample size
The representativeness heuristic was applied on samples of varying

sample sizes (sample size = 10, 20, 30, 40, 50) to investigate the impact
of sample size on effectiveness of the heuristic. Soil sample sets at
various sample sizes were subjectively selected from the 59 soil samples
in a way such that the sample sets maintain certain characteristics of
spatial bias (Fig. 6). The procedures for selecting these subjective
sample sets were as follows. A sample location on the flood plain in the
south part of the study area was chosen as the seed sample. Then
samples were drawn randomly from the remaining 58 samples (without
replacement) at selection probabilities being inversely related to their
distances to the seed sample (i.e., a sample closer to the seed sample
have a higher probability of being selected). For each sample size,
multiple sets of samples were generated following the above proce-
dures. Spatial distribution patterns of the sample sets were then visually
examined. One sample set was subjectively chosen following the prin-
ciple that the samples should have a relatively wide spatial coverage
while concentrating in some areas more than others. For example, the
selected sample set of size 10 spreads across most part of the study area
but most of the samples are on the floodplain and foot-slopes. Similarly,
the sample set of size 20 has a wide spread but most samples are
clustered on the foot-slopes and hill-slopes in the south part of the study
area.

The representativeness heuristic was applied to determine the op-
timal sample weights for each set of the subjective samples for soil
mapping. For each set of soil samples, accuracy of the SOM content map
predicted using models trained with unweighted soil samples were
compared to that predicted using models trained with soil samples

Fig. 6. Soil samples at varying sample sizes selected from the 59 soil samples in the study area.
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weighted by the optimal weights. The impact of sample size on per-
formance of the heuristic was then be examined.

2.5.3. Optimal sample weights as guidance to filter soil samples
Filtering existing samples (i.e., selecting a subset of samples) is

another commonly adopted strategy to reduce spatial bias in the sam-
ples (An et al., 2018; Boria et al., 2014; Varela et al., 2014). The optimal
weights of the 59 existing soil samples determined from the re-
presentativeness heuristic were used as guidance to filter soil samples
for SOM content mapping. The existing soil samples were first sorted on
descending order of their weights. A sample set at size s (s= 20, 21, …,
59) was then obtained by selecting the first s samples (i.e., in des-
cending order of weight). As comparisons, at each sample size, another
sample set of the same size s was obtained by selecting the last s samples
(i.e., in ascending order of weight). Yet another one hundred sets of
samples of size s were obtained, each was constructed by randomly
selecting s samples from the 59 samples (i.e., random samples). Sample
representativeness was computed for each sample set obtained through
the above three filtering strategies; each sample set (unweighted) was
also used to train models for SOM content mapping. This experiment
allows examining how mapping accuracy responds to sample filtering
strategies.

3. Results

3.1. Effectiveness of the representativeness heuristic

By weighting the samples with the optimal weights (Fig. 7) de-
termined from the representativeness heuristic, the representativeness
of the 59 soil samples increased from 0.906 to 0.964. The general
spatial patterns of the SOM content maps predicted based on the un-
weighted soil samples and soil samples weighted by the optimal
weights (Fig. 8) are similar. Lower-to-toe slopes and floodplain areas
were predicted to have high SOM content and upper-to-middle slopes
were predicted to have low SOM content. This agrees with our under-
standing of how the terrain influences SOM content in the study area.
On lower-to-toe slopes, gentle depositional processes tend to be the

dominant processes that usually lead to higher A-horizon SOM content.
On upper-to-middle slopes, erosive processes tend to be the dominant
processes and that reduce the A-horizon SOM content. SOM content
maps predicted with the iPSM method tend to have fewer variations
and smaller value ranges than those predicted with the MLR method.

Nonetheless, validation revealed that accuracies of the SOM content
maps predicted based on soil samples weighted by the optimal weights
were generally higher than those predicted based on unweighted soil
samples (Table 1). When the samples were weighted to train an MLR
model for mapping SOM content, there was a 14%, 10.5% and 39%
decrease in RMSE, MAE and ME, respectively. More outstandingly, the
EVS increased from 0.033 to 0.23, suggesting the MLR model trained
using weighted samples can explain a much larger proportion of
variability in the SOM content over the study area. SOM content maps
predicted using the iPSM method were generally more accurate than
those predicted using MLR. Yet weighting the samples in iPSM did not
improve prediction accuracy much. RMSE slightly increased while MAE
and EVS slightly decreased. However, there was still a 59.7% decrease
in ME, suggesting that weighting the samples led to less biased pre-
dictions.

Moreover, accuracies of the SOM content maps (RMSE, MAE and
ME) predicted based on soil samples weighted by the optimal weights
were statistically significantly higher than samples weighted by the
random assigned weights (Table 2). This observation was consistent for
both iPSM and MLR.

In addition, for the MLR method, there were strong negative re-
lationships between RMSE/MAE/ME and sample representativeness,
and strong positive relationships between EVS and representativeness
(i.e., positive relationship between prediction accuracies and re-
presentativeness) (Fig. 9). Results for iPSM were mixed. Although the
relationships between RMSE/ME and representativeness were negative,
the relationship between MAE and representativeness was positive, and
the relationship between EVS and representativeness was negative.
Noticeably, the ranges of the accuracy indices for iPSM were narrower
than those for MLR, suggesting that the proposed representativeness
heuristic had not as much impact on iPSM as on MLR.

3.2. Impact of sample size

Across various sample sizes, weighting soil samples by the optimal
weights determined from the representativeness heuristic (Fig. 10)
consistently improved SOM content mapping accuracies (Table 3).
Generally, the accuracy improvements were less significant on soil
samples of larger sample sizes that have higher representativeness
(Table 4. Nonetheless, weighting the soil samples still helped decrease
ME and increase EVS even at larger sample sizes.

3.3. Effects of filtering soil samples

As more soil samples were selected in descending order of the op-
timal sample weight, sample representativeness improved dramatically
(Fig. 11). It reached a plateau (with fluctuations) starting at sample size
25 and then decreased beyond sample size 48. On the other hand, as
more samples were selected at random or in ascending order of the
optimal weight, sample representativeness continuously improved. At
equal sample sizes, representativeness of the soil samples selected in
descending order of the optimal weight was generally higher than re-
presentativeness of randomly selected samples, which in turn was
higher than representativeness of samples selected in ascending order
of the optimal weight. It suggests that the optimal weights determined
from the heuristic are informative of individual soil sample's im-
portance for improving sample representativeness.

Overall, at equal sample sizes, the SOM content mapping accuracies
achieved based on soil samples selected in descending order of the
optimal weight were consistently higher than accuracies achieved on
soil samples selected purely at random, which in turn were

Fig. 7. Optimal weights of the 59 soil samples determined from the re-
presentativeness heuristic.
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considerably higher than accuracies achieved on samples selected at
ascending order of the weight (Fig. 12). Prediction accuracies achieved
under the three sample filtering strategies converged above certain
sample size approaching the full sample size. These observations hold

for both iPSM and MLR, again attesting that the optimal weights are
informative for filtering samples.

When samples were selected in descending order of the optimal
weight, performance of iPSM and MLR responded differently to sample
size. SOM content mapping accuracies using iPSM generally improved
with increasing sample size (except for ME). When 35 soil samples were
selected and used in iPSM, the mapping accuracies (RMSE = 0.674,
MAE = 0.543, ME = 0.110 and EVS = 0.302) were comparable to
mapping accuracies achieved using all existing samples
(RMSE = 0.684, MAE = 0.537, ME = 0.208 and EVS = 0.331;
Table 1), or using all existing samples weighted by the optimal weights
(RMSE = 0.671, MAE = 0.539, ME = 0.084 and EVS = 0.300;
Table 1).

As more soil samples were selected in descending order of the op-
timal weight, SOM content mapping accuracies using MLR slightly
improved until reaching the highest at sample size 26 (RMSE = 0.709,
MAE = 0.557, ME = 0.048 and EVS = 0.211). Note that the accuracies

Fig. 8. SOM content maps predicted using the 59 samples.

Table 1
Accuracy of SOM maps predicted using unweighted soil samples and samples
weighted by the optimal weights.

Method Unweighted samples Weighted samples

iPSM RMSE 0.684 0.671
MAE 0.537 0.539
ME 0.208 0.084
EVS 0.331 0.300

MLR RMSE 0.841 0.723
MAE 0.643 0.575
ME 0.306 0.187
EVS 0.033 0.230

Table 2
One sample t-tests to compare the accuracies of SOM maps predicted based on soil samples weighted by the optimal weights and by random weights.

Method Optimal weights Random weights Shuffled optimal weights

Mean Std t p Mean Std t p

iPSM RMSE 0.671 0.696 0.025 9.718 0.000 0.718 0.039 11.876 0.000
MAE 0.539 0.548 0.023 4.104 0.000 0.568 0.034 8.680 0.000
ME 0.084 0.212 0.070 18.333 0.000 0.214 0.112 11.544 0.000

MLR RMSE 0.723 0.858 0.051 26.226 0.000 0.890 0.093 17.821 0.000
MAE 0.575 0.656 0.043 18.759 0.000 0.682 0.071 14.901 0.000
ME 0.187 0.310 0.057 21.338 0.000 0.315 0.094 13.569 0.000
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were higher than the accuracies achieved using all existing samples
(RMSE = 0.841, MAE = 0.643, ME = 0.306 and EVS = 0.033; Table 1)
and were even slightly higher than accuracies achieved using all ex-
isting samples weighted by the optimal weights (RMSE = 0.723,
MAE = 0.575, ME = 0.187 and EVS = 0.230; Table 1). The accuracies

then gradually decreased slightly with increasing sample size. This is
counter-intuitive at the first glance but could happen under certain
scenarios. For instance, if the relationship between SOM content and
the environmental covariates (principal components) were not sta-
tionary, MLR at best captures the “average” (linear) relationship over

Fig. 9. Relationship between sample representativeness and prediction accuracy over the generations of the genetic algorithm.

Fig. 10. Optimal weights of the subjective samples determined from the representativeness heuristic.
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the study area given representative training soil samples. Adding more
soil samples to the already-representative training samples does not
necessarily result in better MLR models. For example, if the newly
added samples were all from a corner of the study area, the trained MLR
model would better fit the corner area but deviate from the “average”
model that best fits the whole area.

4. Discussion

4.1. Effectiveness of the representativeness heuristic

Experiment results revealed that weighting soil samples by the op-
timal weights determined from the proposed representativeness heur-
istic improved DSM mapping accuracies (especially for the MLR map-
ping method). Accuracy improvements achieved by weighting soil
samples by the optimal weights were less significant on soil samples of
larger sample size. This was expected, given that everything else being
equal, representativeness of soil samples of larger sample sizes could be
good enough and thus there was less space for improvement. On the
contrary, representativeness of soil samples of smaller sample sizes

would be poorer and thus there is more space for the heuristic to im-
prove sample representativeness to increase DSM accuracy. Moreover,
statistical significance tests suggest that the accuracy improvements
were not achieved by chance, implying that the weight configuration in
the optimal weights was statistically meaningful. Besides, a clear posi-
tive relationship between representativeness of the soil samples and
DSM accuracy was observed when using the MLR method for DSM (the
relationship was mixed when using the iPSM method). Overall, it sug-
gests sample representativeness as quantified in the heuristic was an
effective indicator of DSM accuracy. Additionally, the optimal sample
weights determined from the representative heuristic were informative
for filtering soil samples to improve DSM accuracies (e.g., MLR) or
achieve comparable accuracies at a smaller sample size (e.g., iPSM).
Similarly, the optimal weights could also inform the selection of ap-
propriate soil samples for validation of DSM models, which is often a
problem when working with legacy soil data. Overall, the proposed
representativeness heuristic offers a novel and effective approach to
mitigating spatial bias in existing soil samples for DSM.

4.2. Parameter settings

The upper limit of sample weight Wmax is a key parameter in the
representativeness heuristic as it defines the value range of the sample
weights [1.0, Wmax]. The physical meaning of Wmax is that a sample
with weight Wmax would be treated as Wmax times more important than
a sample with weight 1.0 in training DSM models. Based on this ob-
servation, Wmax was subjectively set to 10.0 by default in this study (A
sample can be at most 10 times more important than another sample).
Experiments were run on the 59 existing soil samples with various Wmax

settings to examine the impact of Wmax on performance of the heuristic.
Results (Table 5) showed that applying the heuristic with the default
setting (Wmax = 10.0) achieved the largest accuracy improvements
compared to other settings. In studies where data availability allows,
Wmax may be determined objectively through data-driven procedures
such as cross-validation, beyond taking its physical meaning into ac-
count.

Other less-influential parameters are parameters for the GA. The
default GA parameter settings recommended by the DEAP python
package (Rainville et al., 2012) were used for this study where appro-
priate. Readers interested in fine-tuning the GA parameters are referred
to relevant references (e.g., Lobo et al., 2007; Smit and Eiben, 2011).
Here we offer recommendations for setting population size (number of
candidate sample weight lists in the pool) and number of generations
(number of iterations the GA needs to go through before returning the
optimal sample weights). A population size that is large enough relative
to the problem size (number of sample weights to optimize) is needed to
find a good solution (optimal sample weights corresponding to high
representativeness). A larger population size allows the GA to evaluate
a larger variety of sample weights. Note that a larger population size
also implies longer computing time, as the operations of GA are

Table 3
Accuracies of SOM content maps predicted using unweighted (U.w.) or weighted (W.) soil samples of varying sample sizes.

Method Sample size RMSE MAE ME EVS

U.w. W. Decrease U.w. W. Decrease U.w. W. U.w. W.

iPSM 10 1.171 0.952 18.7% 0.846 0.724 14.4% −0.604 −0.509 −0.587 −0.023
20 0.931 0.705 24.2% 0.652 0.548 16.0% −0.186 −0.007 −0.311 0.215
30 0.779 0.726 6.8% 0.615 0.589 4.2% 0.129 0.198 0.070 0.231
40 0.789 0.772 2.1% 0.619 0.595 3.9% 0.356 0.310 0.219 0.212
50 0.689 0.669 2.9% 0.541 0.526 2.7% 0.216 0.139 0.324 0.325

MLR 10 1.917 1.066 44.4% 1.607 0.856 46.7% −0.092 −0.644 −4.785 −0.139
20 1.187 0.750 36.8% 0.958 0.596 37.9% −0.548 −0.104 −0.749 0.129
30 0.894 0.699 21.8% 0.709 0.539 23.9% −0.138 0.190 −0.230 0.287
40 0.886 0.844 4.7% 0.708 0.662 6.4% 0.426 0.379 0.048 0.102
50 0.784 0.710 9.5% 0.606 0.568 6.3% 0.287 0.131 0.159 0.231

Table 4
Representativeness of the soil samples at varying sample sizes.

Sample size Unweighted samples Weighted samples

10 0.696 0.864
20 0.884 0.908
30 0.878 0.919
40 0.899 0.958
50 0.903 0.960

Fig. 11. Impact of the filtering strategies on the representativeness of filtered
soil samples.
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performed on a larger pool of candidate weights. In this study, the
population size was set to 200 given there were only 59 sample weights
to optimize. This setting as a reasonable balance between GA perfor-
mance and computing time.

As a “rule-of-thumb”, the number of generations can be set to the
generation at which the representativeness no longer significantly im-
proves. Alternatively, the GA can also terminate and return the optimal
weights once the representativeness exceeds a prescribed threshold
(e.g., 0.95). Also note that the computing time would be longer if the
GA runs through a larger number of generations. In this study, the
number of generations was set to 200 based on the observation that
sample representativeness reached a plateau in fewer than 200 gen-
erations in the GA. When optimizing weights for the 59 soil samples, on

average it took 86 s for the GA to complete each iteration (population
size was 200).

4.3. Applicability

4.3.1. Mapping methods
The iPSM and MLR methods used for SOM content mapping in this

study represent two distinct classes of methods for soil mapping or for
spatial prediction in general (Zhu et al., 2018). The underlying premise
of applying MLR (and many other regression-based methods; see
Grunwald, 2009) is that there exists a statistical (linear) relationship
between the target variable to predict (SOM content) and the en-
vironmental covariates and the relationship is stationary across the

Fig. 12. Impact of the filtering strategies on prediction accuracy using filtered soil samples.
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study area. An MLR model (Section 2.3.2) is first fitted based on values
of the target variable and the covariates at sample locations. The model
representing the relationship is then applied to unsampled locations to
predict values of the target variable based on the in-situ covariate va-
lues. In contrast, iPSM (Section 2.3.1) is based on the principle that the
more similar geographic environment of two locations, the more similar
the values of the target variable at these two locations (Zhu et al., 2015,
2018). For instance, soil scientists studied the formation of soils under
certain geographic environment (configuration of climate, geology,
topography, vegetation, and time) at some locations and then expected
the similar soil formation processes to occur at other locations with
similar environment (Jenny, 1994). iPSM does not assume an explicit
stationary relationship to exist between the target variable and its en-
vironmental covariates and thus no models are trained prior to pre-
diction. It directly predicts value of the target variable at an unsampled
location based on environmental similarities between the unsampled
location and the sample locations (the environmental similarities are
used to weight the values of the target variable at sample locations to
predicted value of the target variable at the unsampled location).
Nonetheless, a similarity between iPSM and MLR is that both methods
rely on covariates to predict the target variable (other methods such as
the ordinary kriging rely on spatial distance for prediction).

Weighting soil samples with the optimal weights determined from
the representativeness heuristic effectively improved SOM content
mapping accuracies using both iPSM and MLR, although the accuracy
improvements were more prominent for MLR. In essence, the weighting
scheme down-weights samples that disproportionately over-represent
the covariate space and up-weights samples that disproportionately
under-represent the covariate space. It is thus reasonable to expect the
heuristic to be applicable for other DSM methods involving covariates
for modeling and prediction, including regression and classification
methods (e.g., multivariate nonlinear regression, decision tree) and
geostatistical methods with a regression component (e.g., co-kriging)
(Grunwald, 2009).

The above-mentioned methods use a “global” model to capture the
soil-environment relationship which is assumed to stay the same over
the study area. It is also possible to apply the heuristic to “local”
modeling methods that account for spatially-varying soil-environment
relationships, such as the geographically weighted regression (GWR)
(Fotheringham et al., 2003; Zeng et al., 2016). The GWR fits a “local”
regression model using samples within the vicinity of a prediction lo-
cation. The representativeness heuristic could be applied to increase
representativeness of the samples in the local area and to improve GWR
prediction accuracy.

4.3.2. Sample size
This study used a small data set in a small study area to demonstrate

the proposed representativeness heuristic. A total of 59 soil samples
were used for SOM content mapping over the 60 km2 study area
(density = 1 sample per km2). Nonetheless, the heuristic is expected to
be applicable for mapping over large areas using a large number of soil

samples provided that the samples are subject to spatial bias. A larger
number of samples do not always imply higher sample representative-
ness. For example, if additional samples were all from a small part of
the study area, the representativeness of the samples would not increase
much. Thus, sample size is not the sole factor that determines sample
representativeness (and thus the effectiveness of the heuristic). Another
important factor is the spatial distribution pattern of the samples. In the
case study, it was observed that SOM content mapping accuracy im-
provements achieved by weighting the soil samples with the optimal
weights were less significant on soil samples of larger sample sizes
(Sections 3.2). This was because the representativeness of soil samples
of larger sample sizes was already relatively high and thus there was
less space for improvement. In general, it is reasonable to hypothesize
that the heuristic is more effective on samples with more severe spatial
bias.

4.3.3. Computational considerations
The most computationally demanding part of the representativeness

heuristic was sample representativeness evaluation (Section 2.2.1) in
the GA for determining the optimal sample weights (Section 2.2.2).
Sample representativeness was evaluated on each candidate sample
weight lists in the pool at each iteration of the GA. For each evaluation,
the KDE method estimated the sample distributions (needed for com-
puting representativeness) with a bandwidth parameter determined
from the “golden section search” (Brunsdon, 1995), which itself was an
iterative and computationally intensive procedure. Initially, a sequen-
tial version of the heuristic (running on a single CPU-thread) was im-
plemented using Python 2.7. Using the GA to optimize weights for the
59 soil samples took 4 h and 47 min (each iteration of the GA took 86 s
on average) on a Dell Precision 5820 workstation (8-core Intel Xeon
CPU 3.7 GHz; 64 GB memory; Windows 10 operating system).

To speed up the computation, computing resources on multi-core
CPUs and many-core GPUs (graphics processing units) were exploited
to run the computationally critical steps (estimating sample distribu-
tions with KDE) in parallel (G. Zhang et al. 2016; Zhang et al., 2017).
The parallel version of the heuristic was implemented using the PyO-
penCL python programming package (Klöckner et al., 2012). Running
the parallel version of the heuristic to optimize weights for the 59
samples on the 8 CPU cores (16 threads) took about 40 min (each GA
iteration took about 12 s). It took about 29 min (each GA iteration took
about 8 s) to run on an NVDIA Quadro P4000 GPU (5.3 TFLOPS; 8 GB
memory). With the support of high-performance computing technolo-
gies and resources, the proposed heuristic can be applied to DSM stu-
dies involving many soil samples.

5. Conclusions

This paper presents a representativeness heuristic for mitigating
spatial bias in existing soil samples for DSM. Experiment results of
mapping A-horizon SOM content using existing soil samples in the
Heshan study area showed that weighting existing soil samples by the
optimal sample weights determined from the representativeness heur-
istic effectively improved DSM accuracy. Moreover, it was observed
that the quantified representativeness of soil samples was an effective
indicator of DSM accuracy. In addition, the optimal sample weights
were informative for identifying representative soil samples and thus
can be used as guidance to filter samples for improving DSM accuracy.
Overall, the proposed representativeness heuristic can effectively mi-
tigate spatial bias in existing soil samples to improve DSM accuracy
using such soil samples.

Soil samples coming from multiple sources are very likely to suffer
from spatial bias. The proposed representativeness heuristic is an im-
portant contribution to the DSM community as it offers a novel ap-
proach to tackling the spatial bias issue in soil samples for DSM. Other
than the two DSM methods tested in this study, the heuristic could
potentially be applicable to a wide range of “global” regression and

Table 5
Impact of Wmax settings on performance of the representativeness heuristic (The
59 existing soil samples were used in the experiments).

Method Wmax

5 10 20 50 100

iPSM RMSE 0.685 0.671 0.706 0.711 0.689
MAE 0.542 0.539 0.546 0.552 0.539
ME 0.151 0.084 0.160 0.188 0.155
EVS 0.296 0.300 0.254 0.259 0.289

MLR RMSE 0.754 0.723 0.785 0.773 0.815
MAE 0.591 0.575 0.613 0.599 0.635
ME 0.242 0.187 0.288 0.283 0.310
EVS 0.195 0.230 0.158 0.185 0.104
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classification approaches for DSM (Grunwald, 2009). It can also be
integrated into “local” modeling methods such as the GWR
(Fotheringham et al., 2003) to mitigate spatial bias in the soil samples
for DSM over large areas.
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